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FOREWORD

This final report is based upon research carried out during the past
year on NASA contract NASW-1227, Planetary Meteorology. During the year,
several investigations related to the meteorology of the planets Mars and
Venus were completed and the results are presented here in the form of
four separate papers. Abstracts for these four studies follow, and the
papers themselves comprise Sections 1, 2, 3, and 4 of this report.
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ABSTRACT ) EZS ;

The moﬂn1 of f"-\e oonnrn1 r\1'rr‘n'laf-}'_0n Fnar atnady ctas ar

“caT o~ A i LVL SLLdudy oLrau

L

and symmetrical
regime based upon Charney's development is modified by including the lateral
eddy viscosity. The surface stress is also adjusted slightly. The resulting
modified model is used to study the mean zonal and meridional winds, and the
type of circulation regime on the planet Mars during the equinoctial seasons.
With input parameters based on the recent occultation experiment from Mariner
IV, the computed mean zonal wind at an isobaric surface of one quarter of the
average surface pressure of Mars is about 36 m sec”l, This compares to a
value of about 33 m sec~l computed for the Earth's atmosphere with the same
modified model. Comparing the calculated magnitude of the atmospheric pole-
to-equator temperature difference at the middle level of the atmosphere with
the observed temperature difference at the same level, as deduced from the
observational indications of surface temperatures, we conclude that the
symmetrical regime cannot remain stable. Therefore, in the mean for the
Martian yeaf, a wave type circulation regime will prevail in the Martian
atmosphere.
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THE SEASONAL CLIMATOLOGY OF MARS

/"(;

Frederick B. House

ABSTRACT

A simple theoretical model is formulated to determine the latitudinal and
seasonal variation of the surface and mean atmospheric temperatures of Mars.
The model assumes a single-layered, isothermal stationary atmosphere whose
spectral properties are non-gray, and the temperature climate is computed
from assumed conditions of radiative equilibrium.

The average annual temperature on Mars is computed for representative
surface pressures and atmospheric compositions, based on recent telescopic
observations and the Mariner IV radio occultation measurements. Calculations
indicate a surface temperature of 215°K and a mean atmospheric temperature of
187°K. Little variation is noted in the calculated temperatures for the
different pressures and compositions. Therefore, a representative atmosphere
whose surface pressure is 10 mb consisting of 5 mb COj, 5 mb N3, plus an
additional 30 microns of precipitable Hy0, was selected for the seasonal
climatology study.

Results indicate that the summer poleson Mars have the warmest average
surface temperatures, the south pole temperature, 248°K,_being somewhat
warmer than the north pole temperature, 230°K. At high latitudes during the
winter season, the mean atmospheric temperature is higher than the surface
temperature, which suggests a strong temperature inversion at the surface.
The spring and fall seasons on Mars indicate a marked similarity of the
temperature climate in both hemispheres. For the annual mean, the surface
and atmospheric temperatures at the equator are 226°K and 196°K, and at the
poles are about 173%°K and 160.5°K, respectively. The results also indicate
the seasonal variation of the equatorward extension of the polar ice cap.
The concluding remarks discuss the effect of the atmospheric tramsport of
heat on the Martian temperature climate.
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WATER VAPOR MIXING RATIOS NEAR THE CLOUD-TOPS OF VENUS

) s
¢ P George Ohring

T

ABSTRACT

It has been argued that the observed amounts of water vapor in the
Cytherian atmosphere are incompatible with the presence of an aqueous cloud.
These arguments have been based upon a comparison of the water mixing ratios
derived from the observations and the required saturation mixing ratio. In
deriving the water vapor mixing ratios, it has been assumed that the water
vapor mixing ratio is constant with altitude above the Cytherian cloud-top.
In the present paper, it is shown that if the Cytherian water vapor mixing
ratio decreases with altitude at rates comparable to those in the Earth's
upper troposphere, some of the observed amounts of water vapor, at the

present state of our knowledge, are compatible with the presence of aqueous
clouds on Venus.
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INTERHEMISPHERIC TRANSPORT OF WATER VAPOR AND THE MARTIAN ICE CAPS

o~

George Ohring and Joseph Mariano e

ABSTRACT

During the course of the Martian year, as one polar ice cap forms, the
other sublimates and completely disappears. The thickness of the ice cap is
estimated to be of the order of 1000 times the total amount of water in the
atmosphere. Thus, it has been suggested that, as one ice cap melts, the
water vapor released into the atmosphere is quickly transported to the oppo-
site pole, where it condenses. 1In the present study an investigation is
performed to determine whether large scale atmospheric diffusion can explain
such a transport and — if so — what magnitude is required for the diffusion
coefficient. A diffusion model is developed in which the source of water
vapor is a sublimating north polar cap that initially is one centimeter thick
and extends from 60° latitude to the pole. Over a time period of % Martian
year this cap sublimates and the water vapor released into the atmosphere is
diffused southward by a large scale eddy diffusion process with a constant
diffusion coefficient. Computations with this simple model sugg?st that a
large scale eddy diffusion coefficient of at least 10 cm? sec is required
to accomplish the necessary interhemispheric transporE of water vapor. It
is also noted that a diffusion coefficient of 1010 cm® sec! leads to merid-
ional speeds of water vapor isopleths that are in good agreement with the
observed meridional speed of propagation of the Martian wave of darkening.
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1. ON THE STEADY SYMMETRICAL REGIME OF THE GENERAL
CIRCULATION OF THE MARTIAN ATMOSPHERE

Wen Tang

1.1 Introduction

A numerical experiment applied to the terrestrial atmospheric large scale
circulation was performed first by Phillips (1956). Trom this model Charney
(1959) modified the thermodynamic energy equation such that a column of atmos-
phere is heated or cooled depending upon whether its temperature is below or
above its radiative temperature at the latitude in question. The present
model is basically Charney's development, but the lateral eddy viscosity is
included and the frictional stress acting across a horizontal surface is as-
sumed in a slightly different form. There modifications are important to
the magnitude and direction of the flow in the lower half of the atmosphere.
To investigate the effect of these parameters on the computed wind velocities
in the Martian atmosphere, various values of lateral eddy viscosities and
coefficients of vertical eddy viscosity are used in the computations. Esti-
mates of the most probable wind velocities on Mars are then made based upon
the magnitude of the frictional parameters commonly used in general circula-
tion models.

As a first step in the investigation of the general circulation of the
Martian atmosphere, we consider here only the steady state, axially symmetric
case and solve the circulation problem analytically for the two-level model.

1.2 Differential Equation and Boundary Conditions

What is usually done for the two-level model is the following: The
pressure levels atp=0, pg/4, 2pg/4, 3pg/4, and pg are designated by the sub-
scripts 0, 1, 2, 3, and 4 respectively, where pg is the surface pressure. A
rectangular coordinate system in the horizontal direction with x and y toward
east and north respectively is used. From the equations of motion and con-
tinuity, one can obtain the quasi-geostrophic vorticity equation for levels
1 and 3 as
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¢ = the relative vorticity,
- df
B-dy,
fO = the mean Coriolis parameter,
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k.=__£8._ ,
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2 P2
i = dynamic coefficient of eddy viscosity in the vertical direction,
¢, - ¢
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x, = ——————
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p, = pressure at middle of atmosphere,

VvV ©= Laplacian operator,

K = a proportional constant for the frictional stress near surface,

g = acceleration of gravity,
¢ = geopotential,

time.

t

(2)

The quasi-geostrophic assumption in the vorticity equations is valid for the

Martian atmosphere since the estimated thermal Rossby number is about 0.1

(Tang, 1965).

The first law of thermodynamics and the equation of state can be written

as
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and

/
RT, % f_ @1- q:3> (4)
respectively, where
2 f %
A= 2 - a measure of static stability,
RT2 91- 93

6 = potential temperature,

¥ o= ¢/fo = geostrophic stream function,
T2 = temperature at the middle of the atmosphere,

R = gas constant for Martian atmosphere,
cp = specific heat at constant pressure for Martian atmosphere,

!
dt

radiative rate of heating per unit mass.

A simple approach to compute the radiative rate of heating per unit mass,
dQZ/dt,as a function of latitude is explained below.

A prescribed heating rate as a function of latitude is not very adequate
for the large scale circulation, as the atmosphere determines its own heating
rate as a function primarily of its temperature distribution. In order to
have such a radiative transfer mechanism tractable the following assumptions
are thus made.

(1) The atmosphere is isothermal, in the radiative sense.

(2) The atmosphere is transparent to solar radiation.

(3) The atmosphere is grey to long wave radiation.

(4) The surface of the planet Mars has no heat capacity.

The total incoming solar flux for a day at a given latitude, @, and solar
declination, &, is

_ I . . .
Q p So [ Hl sin @ sin 3 + sin H, cos 8 cos @}

where
17 = the duration of a day (24 hrs),
So = the solar constant,
and H1 = the hour angle between sunrise and noon.



For the equinox, & = 0, sin H, = 1, and the mean flux is

1
S cos
Q. 00 °

T n

The assumption of zero heat capacity at the ground implies that the surface
is in radiative equilibrium. Therefore,

(1 - e)So cos @

4 4
= +voT, - CIT4 =0 (5)
where € = the albedo of Mars,
v = the absorptivity,
0 = Stefan-Boltzmann constant.

The heating rate per unit mass of atmosphere can be written as

dQZ 1
dt (2p2)/8

4 4
[ vO‘T4 - 2v0‘T2 1 .

Substituting T44 from Equation (5) into the last equation yields
dQ, _ 82 - v)o 1-¢ Soc08 @ o7 4
dt 2p2 2-v o 2 ’

The first term in the bracket of the last equation corresponds to the radia-
tive equilibrium temperature (TZ*) at level 2. Tz* may be expanded into a
Taylor's series near 45° latitude where y = 0. The first two terms of this
series may be written as

S cos ¢ 1%
x_ [ [ 1-¢ 0 _ oT do _ v
T = L<2-v> o :l = Tp - (% dy >y - TR<1 " 4a (®)

where Tp = Tz*(y=0). If the radiative equilibrium temperature, Tg, is close
to the observed mean temperature at y=0, then we are able to linearize the
heating rate per unit mass and to write

d
% . 4gv-voT T - T
it =~ 75, 2 2
gy (2-v) chi 2\ L
~ 2, [TR <1 “%a) " R (‘l’l - ‘V3> 1 )




where T, is the observed mean temperature at y=0 and

* = - L
T, Tm<l 4a>.

| From the recent occultation measurements from Mariner IV, the surface
pressure is about 4.1 to 5.7 mb and the mean temperature of the atmosphere is
about 180 20K (Kliore et al, 1965) for an assumed 100 percent carbon dioxide.
With the above information, we can determine the absorptivity of the "grey"

1 Martian atmosphere. The absorptivity computed by House (1965) is about 0.16.

} Since in a grey tenuous atmosphere, the absorptivity depends very little on

3 temperature, this value may be adopted here. However, parts of the Martian
surface are probably covered by a layer of fine dust. The lowest layers of
the atmosphere probably contain a certain amount of dust particles, which
will increase the absorptivity slightly. Therefore, the absorptivity was
increased to 0.18 in the present computations. With this assumption, the
computed radiative equilibrium temperature at level 2 is about 179K which is
close enough to the results of the occultation measurements. Therefore, with-
in the limits of available knowledge, the application of the linear approxi-
mation to Equation (7) is justified. Now we define the 2zonally averaged means
for the quantity G(x,y,t) by

L
= 1
5w =1 [ ctuy.eren ®
o
and its disturbance by
Gt'(x,y,t) = G(x,y,t) - E(Y,t) . 9

Introducing these operators to Equations (1) to (3) and the equation of con-
tinuity, and then integrating the equations with respect to y, we have
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and

8;1
= - Fy— . (13)
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In the case of a steady symmetrical regime, the first three equations
of the last set can be simplified to

- 2

-f v, = AD ul-ki(ﬁl-uB) (14)
- _ a2 = - 3- 1
-fov3 = AD Uy + ki(u1 - u3) - K <'2 u -3 u€> (15)
By  3%g 99 5 9wy - Ty
B3,  TEe a M5 (16)
2 op y
where
oo &
dy
From Equations (7), (13), and (16), we have
f 2A f A
AD* T.- (k. +2%8) D2(W, - Uy +=2— (@, - §,) = -2 (17)
1 i 1 3 RTm 1 3 ba ¢
From (14) and (15) we arrive at
2, K = _ 2 3K\~
0"+ 25 )u1 = - (D" - A )u3 (18)

Eliminating.t_l3 between (17) and (18), we obtain a sixth order, ordinary, non-
homogeneous differential equation

2 2
6 sg 2K\ 4 KRR, 2f “AN , £AK L 3f_AK
D0 - (54— P+ =L+ - (19)
2A A A2 RT A 2 8 2
m A“RT aA
m
where K, = k, + %A
j i
4
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Six boundary conditions are needed, namely:

Gl=o at y=* W (20)
E3=o at y=*W (21)
and Tzl= 0 at y =W (22)

where v = 0 represents the position at +45° latitude,
= * W represents the positions at the pole and the equator respectively.

<

From Equations (14), (20), (21), and (22), we obtain the following con-
ditions.

D" u, =0 . (23)
By using Equations (17), (18), (20), (21), and (23), we obtain

£ A

4~ _ "o
(AD )u1 = Za * 24)
Finally, the six boundary conditions for u, can be rewritten as
“1=o at y=* W (20)
D2T11=0 at y=* W (23)
4 — foA
= —— = + .
D 4 = Zaa at y W (24)
1.3 Solutions
3RTm
The particular solution for Equation (19) is Baf and the complementary
function of Equation (19) can be written as o
Z aﬂ eXP(Bzy) .
The complete solution is then
6 3RT_
_— 25
aﬁ, exp(BEy) + Baf ' (25)
=1 °



The quantity B, can be obtained by, first, substituting exp(B;y) into (19)

and then solving the six-degree algebraic equation in By However, the six-
degree algebraic equation can be reduced to a cubic equation and solved rather
easily. When all values of B, are determined, @y can be determined from the
boundary conditions (20), (23), and (24) through a six by six matrix opera-
tion.

If the three pairs of By, are one real and two complex conjugate roots,
one can prove that the real part of the solution of &, should be four real
negative numbers. The imaginary part of the solution of &) should add to
zero. All these characteristics of the roots are attributed to the properties
of the boundary conditions and the sixth order differential equation. These
characteristics are very useful for checking the numerical results.

Suppose

Bp=a, t 0,4
Then from (25), we have
&S 3RT_
uy = j{: (aﬂl 1) exp(a y) (cos bzy + i sin b y)+ ga f (26)
£=1
The real part of the solution of Gl is
_ o 3RT_
Re u, = E: (aﬁl cos bﬁy - aZZ sin bZY) exp(aﬂy) +-§;?; . 27)
=1

Substituting the solution (26) into Equatlon (18) we find the particular
solution of u, as

3
6 Xy
m £ 4 2A ( )
8af_ ~ 73k PRy
=1 2A

and the complementary function as a exp(71y) + b eXp(-71y)
where

3K
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From the boundary condition on u we find

a=51nh27W[:z < >Si“h(51,+71)w’

/RTm ‘!
'(8af >~51nh71WJ
¢

The real part of the solution for T13 is

RT RT  sinh 7.W 6
Reﬁ3= L - L cosh 7.y + z 231 5 3.
Bafo 4af° sinh 271W 1 = (g'b[, K)_'_4 b ]
4a b K
2 3K 2 2 A
{{: z1<(a - by ) (8 '2A)+4azbz>+°‘zz A J

(sinh [az + 71]w * cos b W exp[')’zy] +

[ smh27w' £

+ sinh [y, - aﬂ]w * cos b W exp[-yly]) - exp(azy) cos bzy>_‘

4a b K
g 2 2 K., 2 2 3K
'[' %1 7a +°‘z2<(az’bz+2A)(az‘bz'zA)+‘*a z)]

r 1

L sinh 271w

N

<cosh (a£+ 71)W + sin bzw exp(71y) -

- cosh (71 - aﬁ)W + sin blw exp(-71y)> - exp(azy) sin bzy‘]} (28)
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Substituting (26), (27), and (28) into (14) we obtain the real part of
as

6
- _ [ A [ 2 .2 2 .2
vy = <— fo> Z { L(aﬂl(aﬂ-bl ) - 2azb£a£2> cos bzy - <a22(aﬁ~b2) +
=1

k.,
. i - =
+ Zazbga£l> sin bzy } exp(aﬂy)} + fo (u1 - u3) . (29)

vy

Taking the derivative of (29) with respect to y and using the approximation

w, N 2
27 pg
we have
TN - [ 2 .2, K.,
Re wy ® - << > Z 2.2 31<) + 4als? JL [aﬂl (ay bf 24
=1 @b 7
@22 3K 4 2b2 . ‘*azsz'] 7,608 bW
A E 2A £2 A ] sinh 271W

. (sinh (a£+7l)w . exp('yly)- sinh (71-a£)w . exp(—yly)> -

AazbEK

- <a£ cos bﬁy - bz sin b£y> exp(agy):l - [- ocm i +

v, sin b W
2 2 2,2 3K 22 1 2
+ af,z((a[bz‘“ 280 (847 ZA) * 4a /a> :l [ sinh 2y W

. <cosh(az+ 71)W . exp()’ly) + cosh (71-a£)w . exp(_yly)>-
£=6
- exp(azy) <aﬂ sin bﬁy + bz cos b£y>]}+z { [ <_ A >
L\ 1§
£=1
-a(a3-3ab25-a (3a b) a, .a, -, b .
£1°74 TR £2 £ L1746 8278
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- cos b < ;> <§21(3agbg bg) + a 2(a 3a b )>
k. ki 71RTm
+ — f <aﬂlbﬂ+a£a£2 > ] sin bl%} exp(azy) +-§: 'ZEEE-

sinh 7. W
" simh 2 W sinh 7,y } - (30)

Equations (27) and (28) are the equations used for computing the mean
zonal velocities at levels 1 and 3 as a function of latitude. Equation (29)
is used to compute the mean meridional velocity at level 1. Equation (30) is
the expression for the mean vertical velocity in pressure units at level 2.

The symmetrical circulation regime accomplishes a reduction in the radi-

ative equilibrium temperature difference between equator and pole. The
reduction is simply

(T*-T)'W

f ¥
1 _.jL __0° Jf <}'_ a >d . 31
[ S §,- U, y_!w (1)

After evaluating the integral, one obtains the real part of AT as
6

Re AT = 2fo sinh 7. W a )( 2 2 3K)+
¢ T Ry, | sinh 2y w 22 31( A 2 z 28’ (3;7P)" 74
1 1 [( P A+ 4 ]

2 2 AazbﬁK
+ 4a b > +-a£2<-jr——-> ] [ <%1nh (a£+ 71)W + sinh (71 - az)é> -

4a b K
1P 2.2 K, 2.2 3K 227 .
- cos bzw:l'['azl AT az2<( a;by o) (@b 2) TAahy >]

AT

[}

r 2f° 6
. L cosh (a£+71)w - cosh (71-a£)€> sin bzwl }'— = };
=1

K

.{ Z(az-bZ) - | < . >

a .a, +x, ,.b

‘ 2 2
)[( j j gi) jbj] L e o
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2 2

3K .
-<s1nhaWcois(aZ 0 A)+2azb2 cosh aZW sin b£W>-

2 2 3K
- (a)ezaﬂ-clfﬁ1 £> (( Zazbﬂ) sinh aﬁw cos bﬁw + (az 4 IA )

4azb2

2 .2 3R2
EI,ZA)+4 ]

. 2 2 3K
. l:(aZZaﬁ - Ot“bl> <s1nh azw cos bzw (az - b£ - 24 ) +

+ (cosh a W sin b W)> ] -
g g a24b2) [(a

+ Zazbﬂ cosh aﬂw sin bzw > + (?zlaﬂ + azzbz> ((- 2a b ) sinh a W .

2 3K ,
cos sz + (az - bg - EX) cosh aﬂw sin b1ﬁ> } }'-

L, 2
) Tm sinh 71W
4a71 sinh 271W

(32)

The results of the computations are discussed in the next section.




1.4 Results and Discussion

In order to compute the wind velocities and the reduction in the rad-
iative temperature difference between equator and pole accomplished by the
circulation, we have to know the factor kz. The factor is a function of
6.K0.-6_)and is a measure of the static stability of the atmosphere. The
potential temperatures 6., 0,,and 6, at levels 1, 2, and 3 for Mars can be
determined from estimateS of the veftical temperature profile. With the
convective-radiative equilibrium model of Ohring and Mariano (1965) and
composition and pressure data from the results of the Martian IV occultation
experiment, the vertical temperature profile can be estimated theoretically.
The following input parameters are assumed:_ surface temperature is 2179K;

g is 373 cm/secz; cp is 0.203 cal gm'1 deg'l; cp/cV is 1.28; R is 1.89 x 100
cm® sec”“ deg”™" and an adiabatic lapse rate is assumed in troposphere. The
computed temperature profile is shown in Figure 1.

From this profile we comgute the gquantity 6,8 -63),which is about 46.
The corresponding values of )\“/k. and A/k. for £ oI 079 x 1074 sec™l are
. i i o
shown in Table 1.

TABLE 1

Values of leki and A/ki for different .

i 22 szoz ) A Rgv(2-V)oT % 6, )
(gm cm- 1 sec-1) k; <} ug  6,-6, ) k. ( Y
(cmf2 sec)
50 0.13 x 10°° 21
100 0.65 x 10-10 10.5
200 0.38 x 10-10 5.3

In Table 1, the absorptivity v is assumed to be 0.18; the temperature Ty is

assumed to be 185%K. ki may be writteg as
k, = —H&— (33)

i R T2P2

The quantity A can be computed by multiplying ki by the value ﬁ* in
Table 1 and is 1

A = 10.01 x 107 sec”!

The quantity K, can also be computed from the following formula if A
and p are given

13
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2
P.f B
K, = k, + 224 k(1 + -2 —2_ 4
i i 2 6,-6
ug 13

(34)

k(1 + 3.63 x 107 &
1 S

I

The values of Kj for different A and | are shown in Table 2.

TABLE 2
Values of K, for different lateral eddy viscosities,
and verticallcoefficients of dynamic eddy viscosity p.
A(cm2 sec-l) p(gn c:m-1 sec—l) Kj (sec-l)

10° 50 0.81 x 10>
100 1.54 x 107
200 2.99 x 107°
1010 50 1.66 x 10>
100 2.38 x 107°
200 3.97 x 10°°
101t 50 10.08 x 10°°
100 10.80 x 10™°
200 13.8 x 10°°

Anotggr constant, K;in the eXpression of the surface stress is adapted
as 4 x 107° sec! (Phillips, 1956),

The computed mean velocities at different levels based on the above
input data for various lateral eddy viscosities, A, and vertical coefficients
of eddy viscosity pu, are shown in Figures 2 to 10. u,, u,, and u, are the
mean zomal winds at levels 1, 2, and 3, T, and T, are computed ffom
Equations 27 and 28 and values of T, are interpolated; Vi, the mean meridion-
al wind at level 1, is computed from Equation 29.

15
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Figure 2. Mean zonal and meridional wind velocities for the
case of A = 109 ecm2 sec™! and u = 50 gm em™! sec”

OiGA97 — 40F

R T T
1 T 9 Uy T2 Ty
>
. | i
20 _-10 0 10 20 30 20 50

VELOCITY (m sec-!)

Figure 3. Mean zonal and meridional wind velocities for the
case of A = 109 cm? sec™! and g = 100 gm em™! sec”
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Figure 4. Mean zonal and meridional wind velocities for the
case of A = 10° cn? sec~1 and g = 200 gm em~1l sec-l.
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The mean meridional wind velocities;§3,atlevel 3 are not shown in these
figures, but they have the same magnitude as Vl and are of opposite sign.

From the mean zonal winds at levels 1 and 3, we can estimate the mean
zonal winds at level 4 by extrapolation from an assumed linear profile. The
results are shown in Figure 11.

As can be seen from Figures 2 to 11, the different values of A and p
produce different wind profiles. As A increases, the maximum zonal wind
velocities at middle latitudes decrease. For A < 1010 cm? sec'l, the change
is small. For A = 1011 cn? sec” ,.the wind velocity at level 1 reduces to

= 1010 .2 -1 = 109 cm? -1
about one half the value for A = 10 cm“ sec -, When A = 107 cm® sec *, the
meridional wind profiles are flatter in middle latitudes than those for

larger A.

The small deviations of the mean zonal wind speeds between the cases
A = 107 cm?/sec and A = 1010 cm2/sec is due to the fact that the magnitude
of the lateral friction is assumed smaller than the magnitude of the vertical
friction. Therefore, neglect of the lateral friction has little influence
on the maXimum magnitude of the mean zonal wind. However, when A >> 1010 cm2/sec,
the magnitude of lateral friction dominates over vertical friction. As a con-
sequence, not only is the magnitude of the mean zonal wind at level 1 sharply
reduced, but also the mean zonal wind direction at level 3 changes from west
to east. For the case of zero vertical frictional stress, an east wind must
be found at the level 3. This can be very easily seen from Equation (18).
This phenomenon will also be found in the general circulation model developed
from Bjerknes' circulation theorem when surface friction is not taken into
account. This may be explained physically as follows. When large scale
geostrophic balance is reached in the atmosphere, in which the temperature
is higher at the equator than at the pole, the flows at levels 1 and 3 on a
rotating planet, are west and east, respectively. Since an east wind means
that the atmosphere is moving more slowly than the tangential velocity of
the rotating planet at surface level, the east wind would be reduced by the
drag of the planetary surface. The easterly component at higher levels will
also be reduced due to internal friction. Finally, the wind at level 3 may
be either a weak easterly wind or a westerly wind. Thus, with the inclusion
of vertical friction, the westerly component of the wind at level 3 is
increased.

The meridional wind speeds increase when the coefficient of vertical
eddy viscosity, k., increases. Mathematically, this can be seen from
Equation (14). From the physical point of view, the increase of meridional
velocity with the corresponding increase of vertical intermnal friction is
attributed to the fact that the frictional force always causes the actual
wind to flow across the co.tour lines toward "low'" areas and to deviate
from the geostrophic wind. The frictional force will upset the original
force of balance between the pressure gradient force and the Coriolis
force. A new balance - f forces among the frictional force, the pressure
gradient force, and tle Coriolis force must be reached if frictiom is
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introduced or increased. As a result of this new balance, the component of
the wind directed toward lower pressures will be increased. In the upper
layer of the atmosphere, the geopotential height is higher at lower latitudes
than at high latitudes. Therefore, the northward component of wind will
increase if the vertical internal friction is higher.

For the completely frictionless ease, u = k, = K= A = 0, the governing
. i
equation, (19), reduces to
_ 3RTm
Y1 < 8afo (35

For numerical values of T,, R, a, and £ as shown before, u, is about

43 m/sec. It may be worthwhile to mentfon here that this quantity is 5
times that based on Charney's (1959) formula. The cause of this difference
is due to the somewhat different form of the surface stress used in our
computations. We assume the surface stress to be proportional to the first
power of the surface wind, as also assumed by Phillips (1956). To compute
the surface stress, a value for the surface wind is required. Since surface
wind is not directly computed from the equations, a linear extrapolation is
made downward from levels 1 and 3, so that u, is written as

4
= _ 3= e
Y4 27372
In Charney's approach however, ﬁ; is further simplified by assuming
= _ 1l
Y 23

This approximation, when introduced into the equation of motion, leads to
a zero wind velocity at level 3, which is not a realistic velocity.

Figure 11 shows the zonal wind at level 4, the level near the surface.
For A = 10™Y cm“ sec™ " or less, the zonal wind has a double peak, in con-
trast to the case of A = 101 or to the higher level winds, which all have
single mid-latitude peaks. The values of the wind for these eases are
small, however, and the double peak may be the result of using a simple
linear extrapolation technique.

The theoretical values of zonal and meridional velocities at level 1
for the earth, computed by Charney (1959) without considering lateral friction,
are about 24 m sec™! and 12 cm sec‘l, respectively. A similar computation
for earth with our model, with A = 0, yields a maximum zonal wind velocity
at level 1 equal to about 36 m sec™l. "If the lateral eddy viscosity is
taken into account, the estimated magnitude of the zonal wind would be some-
what reduced, depending upon the magnitude of A chosen. The choice of the
right value of A for the free atmosphere is difficult. Based upon the
empirical and theoretical studies by Richardson and Oboukhov (see Gandii, 1955)
on the relation between the lateral eddy viscosity A, and the scale of motion
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of a system, the quantity A may be written as

4

A ‘A.'lO-2 L3 m2 sec_l

For the scale of eddies of the general circulation in the terrestrial
atmosphere

L 82 x 106 m

>

and, hence, A ®2.5 x 1010 cm2 sec-l. This value was used by Adem (1962)

with some success. If A = 1010 cm? sec™! is used in our model to compute
the wind velocity in the earth's atmosphere the computed values at levels
1 and 3 are u 33 m sec™! and © 10 m sec™ . The mean zonal velocity,

at level } in middle latitudeS of the Northern and Southern Hemisphere
oﬁ Earth in summer and winter (based upon Obasi, 1963) are shown in Table 3.

TABLE 3
Mean zonal wind velocities between 30° and

60° latitude in the terrestrial atmosphere,
calculated from the results reported by Obasi (1963).

Hemisphere Mean Zonal Wind Velocities (m sec_l)
“ 250 mb 750 mb
ISummer Winter | Yearly Mean || Summer|Winter | Yearly Mean
Northern
Hemisphere 13 17 15 3 6 5
Southern
Hemisphere 22 26 24 8 10 9
Mean 20 7

The obgerved and computed values are in reasonable agreement. Therefore,
A = 1010 cnf sec! is probably a proper value for the earth's atmosphere.

What is the most probable value of A for Mars? No one really knows.

A reasonable estimate m1§ht be a value similar to that in the earth's
atmosphere - A = 1010 ec”
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For A = 1010 cm2 sec.'1 and u = 100 gm cm-1 sec-l, the Martian mean
zonal and meridional velocities at middle latitude at different levels are
shown in Table 4.

TABLE 4

The Martian mean zonal and meridional
at middle latitudes at different levels (+
represents west or south wind, - represents
north or east wind).

level Mean Zonal Velocities (m/sec) Meridional Velocities (m/sec)
1 36 5
2 24 0
3 10 -5
4 -2 -10

The computed meridional wind velocities for Mars as shown in Table 4
are on the average about one order of magnitude higher than those of the
earth. Since the magnitude of the meridional wind velocity is almost linear-
ly proportional to k., and k, is inversely proportional to p,, as seen in
Equation (33), the méridional wind velocity on a planet having a small sur-
face pressure, will be larger. Thus, the large value of the meridional
velocity on Mars may be attributed to the low surface pressure on the planet.
The meridional velocities at levels 2 and 4 are obtained by linear inter-
polation and extrapolation, respectively. _The magnitude of the meridional
velocity at the surface level is 10 m sec™ %, which is several times the mean
zonal velocity at the surface in the symmetrical regime. As shown later, a
symmetrical circulation regime is not dominant on Mars and is replaced by a
wave regime. We have no data here to show how the meridional velocities at
different levels would change from symmetrical regime, when the wave regime
is developed. However, it is highly probable that the high percentage of
meridional cloud movements at low latitude on Mars (Gifford, 1965; Tang, 1965)
is directly associated with the relatively strong mean meridional wind
velocity and indirectly with the low value of the surface pressure on Mars.
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The radiative equilibrium pole-to-equator temperature difference in this
model is about 74°C. The temperature difference between pole and equator is
reduced by an amount AT by the symmetrical circulation. The final pole-to-
equator temperature difference, Tpe’ is then

Te = 76°C - AT (37)

where AT represents the reduction in the temperature difference that is pro-
duced by the symmetrical circulation. The calculated values of AT and Tpe
for various A and p are shown in Table 5.

TABLE 5
The calculated magnitude of the pole-to-equator temperature differences, T

at the middle of the Martian atmosphere of the symmetrical regime for various
lateral eddy viscosities A, and vertical dynamic coefficients of eddy viscosity, p.

A(cmz/sec) u(gm/cm/sec) st (Cc) Tpe °c)
9
10 50 14 60
100 18 56
200 25 49
1010 50 21 53
100 25 49
200 30 44
1011 50 50 24
100 51 23
200 54 20

Based upon observational inferences, the mean magnitude of pole-to-
equator temperature difference at the surface is about 35°C to 40°C
(Ohring, Tang, and DeSanto, 1962; Mintz, 1961). The mean magnitude of the
pole-to-equator temperature difference at the middle of the atmosphere is
probably less than this value - perhaps having a value of 25°C to 30°C.
The computed magnitudes of the atmospheric pole-to-equator temperature
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differences produced by the symmetrical circulation are greater than those
inferred from observations, except when A = 1011 cm? sec~l. For our best
estimate of A (= 1010 cm2 sec-1) and u (= 100 gm cm 1 sec-1), the computed
temperature difference, Tpe, is about 50°C, which is at least 20°C to 25°C
higher than the observed value. This means that the observed average temper-
ature difference cannot be explained by a symmetrical circulation regime. The
symmetrical regime is not effective in transporting heat, and is therefore
replaced by a wave regime, which is more efficient in transporting heat. The
parameters used in these calculations are for the Martian equinoctial seasons,
and, therefore, these conclusions are representative of the average Martian
year.

Although the symmetrical regime is not the prevailing regime in the Martian
atmosphere, the velocities computed above should be first approximations of
the average zonal and merdional velocities of the atmosphere at middle lati-
tudes.

As a continuation of this study, a non-steady, assymmetric model that
includes time variations and eddy transports of zonal momentum will be devel-
oped and applied to Mars.
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2. THE SEASONAL CLIMATOLOGY OF MARS

Frederick B. House

2.1 Introduction

The climate on Mars has been a subject of debate since the invention of
the telescope. The basis for a study of Martian climatology is the welding
together of available observational data and appropriate theory. Prior to
the early radiometric measurements of Mars by Coblentz and Lampland (1323},
estimates of Martian climatology used visual and photographic observations in
order to calculate surface and atmospheric temperatures, e.g., Milankovitch
(1920). Gifford (1956) has summarized radiometric measurements of Mars over
the years in a seasonal climatology of the surface temperature distribution.
Measurements by Sinton and Strong (1960), and by Kaplan, Munch, and Spinrad
(1964), have increased our knowledge about the diurnal temperature variation
and composition of the Martian surface, and about the total pressure and
composition of the atmosphere of Mars, respectively. Results from the radio
occultation experiment during the Mariner IV fly-by of Mars (Kliore, et al,
1965) have added considerably to our knowledge of the Martian atmospheric
pressure and composition. In light of these new measurements, a study of the
seasonal variations of the Martian climate seems appropriate at this time.

Recent research emphasis has centered around investigations of the temper-
ature structure of the Martian atmosphere, e.g., Goody (1957), Arking (1963),
Ohring (1963), and Prabhakara and Hogan (1965). The results of these investi-
gations are based on calculations using multi-layered model atmospheres which
generally apply to the average Martian latitude and climate.

In this paper, a simple theoretical model is formulated to determine the
latitudinal and seasonal variation of the surface and mean atmospheric temper-
atures of Mars. In this model, the temperature climate is computed from
conditions of radiative equilibrium, assuming the atmosphere to be stationary.
The spectral properties of the Martian atmosphere are assumed to be non-gray,
that is, the absorptivity and emissivity of the atmosphere to thermal radiation
are a function of the surface and atmospheric temperatures, respectively. The
" absorption of solar radiation by the atmosphere occurs in the mear infrared
bands of carbon dioxide and water vapor, and this absorption is assumed to be
independent of atmospheric temperature. Gray spectral properties are assumed
to hold for the absorption and emission of radiation at the surface.

In a climatological study such as this, the need for a model atmosphere
which calculates a detailed vertical temperature structure is of secondary
importance to the inferred climatic variations. Instead of using a sophisti-
cated multi-layered model atmosphere, this study incorporates a single-layered
atmosphere in order to reduce the computing time and to emphasize the changes
in climate. The loss in accuracy when using the single-layered model is
probably no greater than the error introduced by the uncertainty in total pres-

sure and composition of the Martian atmosphere. 29




2.2 Radiative Equilibrium Model Atmosphere

In any planetary heat budget study, the fundamental law of energy con-
servation is a basic assumption. This law states that the sources of energy,
principally solar or short-wave radiation absorbed by the surface and atmos-
phere, are balanced by the losses of energy, the emission of radiation to
space.

The radiative equilibrium temperatures of the surface and atmosphere
depend on the magnitude of the incoming solar energy and on the absorbing
and emitting properties of the surface and atmosphere. The interplay of
energy between the sun, Mars and space can be described by two energy balance
equations, one for the surface and the other for the atmosphere. First, let
us examine the important radiation components of the unit atmospheric column
shown in Figure 1, and then develop the balance equations from these components.

Of the short-wave radiation incident at the top of the atmosphere s
a small portion is absorbed by the atmosphere before reaching the surface.
A major portion of the solar radiation is absorbed by the surface and the
remaining energy is diffusely reflected back to the atmosphere (;) and to
space . In this model, atmospheric scattering of energy is Teglected and
the atmosphere is assumed free of clouds. The planetary albedo of Mars is
controlled mostly by the assumed surface reflectivity and to a lesser degree
by atmospheric absorption.

In turn the surface emits long-wave radiation (:) back to the atmosphere
@ and to space 6 . The atmosphere emits radiation to space directly
and emits radiation back to the surface. A major portion of this back radia-

tion from the atmosphere is absorb at the surface ;a small portion is
reflected back to the atmosphere and to space <:).

In order to satisfy the conditions of radiative equilibrium, the gains
and losses of energy at the top of the atmosphere, within the atmosphere and
at the surface must all be equal; i.e., the net radiation is zero. The exchange
of sensible heat at the surface-atmosphere interface and the storage of heat
in the surface and atmosphere are neglected in this model. The equation which
expresses the balance of energy gains and losses for the surface is given by

4 4
(1 - RSO)FSO + € ea(Ta)(TTa = eoUTB s (1)
where Rs = the surface reflectivity to short-wave radiation,
o )
FS = the incident short-wave radiation at the surface,
ez = the surface emissivity to long-wave radiation,
ea(Ta) = the atmospheric emissivity to long-wave radiation, a func-

tion of the atmospheric temperature Ta,
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Figure 1. Radiation components of a unit atmospheric column.
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o = Stefan-Boltzmann's constant,

T the surface temperature in °K.

(o]

The gains of energy to the left of Equation (l), respectively, are the ab-
sorbed short-wave radiation and the absorbed long-wave radiation emitted by
the atmosphere. Both of these terms are balanced by the surface radiant
energy loss.

A similar equation for the energy balance of the atmosphere is given by

F - F, [l-RS (1-e'1'66T)] + eoaa(To)UTj = [2-(1-eo)ea(Ta)]ea(Ta)cTa4 (2)

t (o} 0]

where FSt = the insolation at the top of the atmosphere,
T = the optical thickness of the atmosphere to short-wave
radiation,
-1.667 . .
e = the transmittance of the atmosphere to diffuse short-wave

radiation, assuming e~ T is the vertical beam transmittance

of the atmosphere to direct short-wave radiation,

aa(To) the absorptivity of the atmosphere to long-wave radiation

from the surface.

The first two terms to the left of Equation (2) are the solar energy absorbed
by the atmosphere, both the direct component and diffusely reflected component
from the surface, and the third term is the absorbed long-wave radiation from
the surface. These energy gains are balanced by the radiant energy loss by
the atmosphere to the surface and space. The term (l-¢5) is the reflectivity
of the surface to long-wave radiation from the atmosphere.

The solution for the mean atmospheric temperature, based on Equation (1)
and (2), is

-1.667 %,

T =
a

{Fst - Fso[1 - Rso(1 - € )1+ - RSo)a‘?‘(T")FSO} (3)

[2 - (1 - eo)ea(Ta) - aa(To)eo]ea(Ta) o

and the solution for the surface temperature using Equation (1) and the value
of T, from Equation (3) is

(1-Rg)F. + e e (T)or %1%
0’ " Sg o a'a a ;
[ e O
o
The calculation of atmospheric and surface temperatures using Equations
(3) and (4) is complicated by the fact that the atmospheric absorptivity and
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emissivity are dependent variables, and are functions, themselves, of the
temperatures to be calculated. Thus, for example, the algebraic solution to
determine the atmospheric temperature is not readily apparent for given values
of solar energy input, and cannot be determined from a single calculation
using the energy balance equations.

However, an exact solution to the equations can be found, using the method
of successive approximations in the computer (trial and error method). The
process of iteration is as follows: Values of atmospheric absorptivity and
emissivity are assumed as an approximation to the exact values. Then the
surface and atmospheric temperatures are camputed using the energy balance
equations. These computed temperatures establish new values of absorptivity
and emissivity, which, in turn, yield better approximations to the equilibrium
temperatures, etc. This iteration process converges rapidly to the exact
solution of the energy balance equations. For example, the temperatures are
accurate to within one degree of the exact solution after four or five itera-
tions in the computer.

2.3 Method of Calculating Model Parameters

The principal input parameters needed for the calculations include the
transmissivity of the atmosphere to a normal beam of solar radiation, e~ 7, or
the absorptivity, 1l-e~ 7, and the effective absorptivity and emissivity of the
atmosphere to long-wave radiation, Qg and ¢4 respectively. Of the gases that
are assumed in the atmospheric compositions, nitrogen, carbon dioxide and
water vapor, the latter two gases are optically active in both the short- and
long-wave regions of the spectrum.

Atmospheric absorption of solar radiation by the near infrared bands of
carbon dioxide and water vapor is computed using the method of Roach (1961)
which is based on the experimental data of Howard, et al., (1955). Following
the notation of Roach (1961), the amount of solar energy absorbed from a
pressure level to the top of the atmosphere, E, is given by

= A

E }2 Ioi cos V¥ i (5)
i

_where I,; is the intensity of solar radiation per wave number at the top of

the atmosphere in the ith absorption band, ¥ is the solar zenith angle, A; is

the band area in wave numbers (cm l). Details of the method to calculate Aj

are contained in Roach's article. The absorptivity of the atmosphere (l-e&7T)
to a normal beam of solar radiation ¥ = 0°, is given by

1-e =gt —r (6)
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where S is the total incident solar radiation, summed over all wave numbers.
Therefore, the transmissivity of the atmosphere to normal solar radiation is

s @

The method outlined by Elsasser and Culbertson (1960) is used to compute
the effective absorptivity and emissivity of the atmosphere to long-wave
radiation. The absorptivity to surface radiation is given by the expression

o0 [

\/\a(v) Io(v)dv \/ﬁa(v) Io(v)dv

— o _ 0
a (1) = = 7 (8)

o T
u/\Io(v)dv °

(o]

where Q(v) is the spectral absorptivity of the atmosphere at wave number v
at a given atmospheric temperature, and I (v) is the emission intensity of
the Planck function at the prevailing surface temperature T,.

In a similar
manner the effective emissivity of the atmosphere is

[

Jf‘ e(v) Ia(v)dv

o
(9)
gT 4
a

ea(Ta) =

where I, (v) is the emission intensity of the Planck function at the prevailing

atmospheric temperature. The values of the spectral emissivity (absorptivity)
are computed using Elsasser's method.

Both effective absorptivity and emissivity have a temperature dependence,
owing to the change of the weighting distribution of the Planck function with
wave number at different temperatures. This point will be discussed further
in the next section, and then the calculated results of the annual mean
temperature climate for different Martian atmospheres will follow.

2.4 Calculated Model Parameters for
Different Martian Atmospheres

Four likely atmospheric compositions and surface pressures on Mars are
considered in this study. Two of these atmospheres, listed in Table 1, follow
from the radio occultation experiment on Mariner IV (Kliore, et al, 1965),

and the second pair of atmospheres are based on the measurements of Kaplan,
et al, (1964).
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Table 1

Surface Pressure and Composition of
Possible Martian Atmospheres

Model No. Surfac?m£§essure (22§ (:i) (mTzii) Reference
1 5 5 0 68.6 Kliore (1965)
2 6 3 3 41.1 Kliore (1965)
3 10 6 4 82.2 Kaplan (1964)
4 25 4 19 54.8 Kaplan (1964)
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Concerning the amount of water vapor on Mars, Spinrad pointed out at
the recent Lunar and Planetary Conference in California that the amount of
precipitable water vapor on Mars is variable with latitude. He suggested an
average value of about 15 p H9O cm2. Revised estimates presented by Dollfus
at the same conference indicate values around 45 u Hp0 cm-2. Therefore, an
average of these two figures was adopted for this study, 30u HZO cm™ 2.

In the far infrared, three absorption bands at different wavelength
regions of the spectrum affect the absorption and emission of radiation. These
bands are the 15u COp band, the 6.3 water vapor band and the rotational water
vapor band. To get an idea of the relative strengths of these bands for the
Martian atmospheres, the spectral emissivity of CO2 and Hy0 for Model No. 3
is plotted as a function of wave number, in Figure 2. These values are based
on an atmospheric temperature of 190°K. The 15y band is by far the strongest
of the three bands owing to the large optical depth of CO in the Martian
atmosphere.

Spectral emissivity calculations for all models were computed at a variety
of temperatures. These results indicate a slight variation of spectral emis-
sivity in the wings of the COp band for various optical depths. More of a
variation in emissivity was noted with changing temperature. On the other
hand, the centers and wings of the H70 bands show a greater sensitivity to
both pressure and temperature than is indicated by the CO2 band.

When computing the effective emissivity of the atmosphere, the temperature
dependence on the Planck function is greater than the variations of spectral
emissivity with temperature. As the temperature increases, the wave number
of maximum emission also increases in magnitude and shifts toward longer wave
numbers. This change with temperature is shown qualitatively in Figure 2 by
the dashed lines.

Computed variations of effective emissivity with temperature for carbon
dioxide and water vapor, are shown in Figure 3. The effective emissivity for
carbon dioxide, €COp , increases steadily with temperature, and then reaches
a maximum value, corresponding to the shift of the Planck function maxima to
wave numbers in the COp absorption band. In the case of the effective emis-
sivity for water vapor €HZO, the values increase and then decrease, corre-
sponding to the shift of the Planck function maxima from wave numbers in the
rotational band to higher wave numbers between the rotational and 6.3u bands.
The effective emissivity for the atmosphere, €, in Figure 3, is the sum of
the curves for €HZO and €CO7 , since there is no overlap of the absorption
bands for the low atmospheric pressures found on Mars.

A curve similar to the one for e4(T;) holds for the effective absorptiv-
ity, aa(To), of the atmosphere to long-wave radiation from the surface. For
a given temperature in Figure 3, @, would equal to ¢,. It must be remembered,
however, that @, is a function of the surface temperature and ¢4 is a function
of the atmospheric temperature. Normally &, is not equal to ¢y for a given
calculation of the radiative heat budget.
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Calculated results of the short-wave absorptivities, the long-wave
absorptivities (at 215°K) and the long-wave emissivities (at 1909K) are shown
in Table 2. The table is further partitioned into the relative contributions
of CO9 and Hp0 to each total value. As would be expected, the contribution
by CO2 is greater than that for Hp0, about three times greater in all cate-
gories of the table. There is a small variation in the CO2 emissivity for the
different models of *.011, whereas, a larger pressure dependence is noted in
the HpO emissivities of *.016. The temperature dependence of the emissivity
due to the weighting of the Planck function mentioned earlier is evident when
comparing the total absorptivity and emissivity columns for each model.

2.5 Average Surface and Atmospheric Temperatures

Calculation of the average surface and atmospheric temperatures on Mars
is now possible using Equations (3) and (4). In addition to the parameters
listed in Table 2, values of the surface reflectivity to short-wave radiation,
the surface emissivity to long-wave radiation and the solar constant are
required for the calculations.

De Vaucouleurs (1964) has made an extensive reappraisal of the planetary
albedo of Mars. He suggests a value of 0.295 with an estimated probable error
of #0.02. A surface reflectivity of 0,310 in the equations is sufficient to
account for this planetary albedo.

Measurements of the infrared emissivities of sandy surfaces by Buettner
and Kern (1965) indicate that the emissivity of quartz sand varies between
.914 and .928 depending on the grain size. Measurements of the spectral
dependence of lunar emissivity by Murcray (1965) indicate values from 0.91 at
10.3p to 0.98 at 8.5u. Assuming that these surfaces are representative of
the Martian surface, an emissivity of 0.925 was adopted for the calculations.

Based on a solar constant of 2.00 cal cml-2 min_1 (Johnson, 1954) and de
Vaucouleurs' albedo, the average rate of absorbed radiation on Mars is 0.152
cal cm 2 min~! which corresponds to an effective temperature of 207.7°K for
the planet in the absence of an atmosphere. Since the atmosphere on Mars
acts as a greenhouse, the average surface temperature will be somewhat warmer
than 207.79K, and the average atmospheric temperature will be somewhat cooler
than this temperature.

The results of the surface and atmospheric temperature calculations are
presented in Table 3. 1Inspection of these values indicates that the tempera-
ture climate on Mars is rather insensitive to the choice of atmospheric com-
position and surface pressure. The surface temperature range is *0.79K and
the atmospheric temperature range is *1.50K. Ohring and Mariano's (1965)
calculations of the average temperature structure of the Martian atmosphere
for a variety of models indicate the same insensitiveness of atmospheric
temperature to the choice of composition and surface pressure.
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Table 3

Average Surface and Atmospheric

Temperatures on Mars

Model No. Surface Temperature Atmospheric Temperature
1 214.7°K 187.7°K
2 214.7 185.3
3 215.3 188.3
4 216.0 188.2
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Based on this evidence, a single atmospheric composition and pressure,
representative of the models discussed in this report, is suitable for the
study of the seasonal climatology of Mars. A surface pressure of 10 mb con-
sisting of 5 mb CO2 and 5 mb Ny seems to be a reasonable choice. The result-
ing optical depth of COp would be 68.6 m atm; the 10 mb surface pressure would
produce a broadening of the H20 bands which is representative of the H20
absorptivities and emissivities listed in Table 2.

2.6 Seasonal Climatology Results

Calculation of the latitudinal distribution of surface and atmospheric
temperatures was carried out at ten-day intervals for the entire Martian year.
These results give some indication of the variations of temperatures within
a seasonal period. 1In addition to the temperature calculations at ten-day
intervals, the average input of solar energy at the top of the atmosphere and
at the surface was computed for each season and for the annual mean. From
these results it is possible to compute representative, seasonal average
surface and atmospheric temperatures as well as the mean annual temperatures.

The graphs in Figure 4 show the latitudinal variation of the average
daily insolation on Mars at the top of the atmosphere for the different seasons
and for the annual mean. Units are in cal cm 2 day'1 where a day represents
one Martian day, 1477 minutes. In these calculations, the seasons represent
time periods of the Martian year which are centered about the equinoxes and
solstices. Thus, Summer is the warm season, Winter is the cold season, and
Spring and Fall represent the transitional seasons between the extremes. Such
a division of seasons has more meaning in a meteorological and climelogical
sense than the astronomical division of the seasons which is taken to be the
periods between the solstices and equinoxes.

Curves for the variation of insolation at the surface of Mars are similar
to those shown in Figure 4 except that they are slightly reduced in magnitude.
On the average for the annual mean, about 2.0 percent of the solar radiation
is absorbed by the atmosphere before reaching the surface. This absorption
varies with latitude, being about 1.7 percent at the equator and 3.8 percent
at the poles. TFor long slant paths through the atmosphere, the absorption of
solar radiation by the atmosphere can be as much as 13 percent of the inci-
dent energy.

The graphs in Figures 5, 6, and 7 summarize the calculated results of
the seasonal climatology on Mars using the radiative equilibrium model. The
contrasting seasons of Winter and Summer are compared in Figure 5, the lati-
tudinal variation of surface and atmospheric temperatures for the Spring and
Fall seasons are shown in Figure 6, and the summary of the mean annual temper-
atures is indicated in Figure 7.

Each set of curves for the seasons has a discontinuity at latitudes

ranging from 20° to 60°. These discontinuities represent the equatorward
extension of the polar ice caps and are based on the dew point temperature
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of the atmosphere at the surface. Assuming that the 30 microns of precipi-
table water vapor in the atmosphere are evenly mixed, the dew point at the
surface for a 10 mb surface pressure is 202°K. Thus, in the calculations,

if the computed surface temperature was below 2020K, it was assumed that the
ice cap had formed and that the albedo of the surface increased from 31 per-
cent to 45 percent, the approximate albedo of dirty snow. As a result, the
computed values of surface and atmospheric temperatures decrease with the
albedo increase, thus, producing a discontinuity in the temperature profiles.

Some of the salient features of the seasonal climatology on Mars are
evident from an analysis of the temperature profiles. In Figure 5, it is
evident that the summer poles in both hemispheres have the highest average
surface temperature, the south pole temperature (248°K) being somewhat warmer
than the north pole temperature (230°K). The mean atmospheric temperatures
during a summer run about 30°C colder than the computed surface temperatures,
and the pole to equator temperature difference in each hemisphere is quite
small during summer, about 12 to 14°C.

In contrast to the summer seasons, the winter seasons show a marked de-
crease in temperatures at latitudes poleward of the equator. The curves in
Figure 5 indicate that the difference between the surface and atmospheric
temperatures decreases with increasing latitude, and, at latitudes greater
than 58°, the mean atmospheric temperature is larger than the surface temper-
ature. Such a temperature configuration as this suggests a strong temperature
inversion at the surface which is indeed the case on Earth at high latitudes
during winter. Two factors contribute to these warmer atmospheric tempera-
tures at high latitudes: 1) greater absorption of solar radiation by the
atmosphere relative to surface absorption because of the long slant path
through the atmosphere, and 2) the effective emissivity of the atmosphere
decreaseswith temperature.

In Figure 6, the Spring and Fall seasons in both hemispheres indicate
similar temperature profiles. As in the case of the Summer seasons, the
temperature difference between the surface and atmosphere is about 30°C at the
equator. This difference decreases with increasing latitude, diminishing to
about 6.5°C at the poles. The temperature profiles indicating Spring in the
southern hemisphere and Fall in the northern hemisphere are somewhat warmer
than the profiles for the opposing seasons, because the planet is closer to
the sun at this time.

The profiles in Figure 7 indicate the mean annual temperature climate on
Mars. Probably the most pronounced feature of these results is the symmetry
of temperatures about the equatorial region, the northern hemisphere being
slightly warmer due to the greater amount of insolation received there in the
annual mean. Surface and atmospheric temperatures at the equator are 226.1°K
and 196.39K, respectively, and decrease to about 173.3°K and 160.5°K at the
poles.

The effect of the atmospheric transport of heat on the temperature climate,
computed from the radiative equilibrium model, would be a decrease in the
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temperature gradients with latitude, especially the atmospheric temperature
gradient. This effect would be quite evident during the winter seasons at
high latitudes during the polar night. When using the radiative equilibrium
model, the computed temperatures are Zero because there is no solar input of
energy. With heat transport into these latitudes, the temperature will
increase to between 125°k and 150°K,depending on the latitude. In the case
of the Summer seasons, the effect of heat transport will have hardly any
effect on the pole to equator temperature gradient and will cause only a
small lowering of the temperature magnitudes. The effect produced by heat
transport for the Spring and Fall seasons will be somewhat larger than would
be expected for the Summer season. ‘
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3. WATER VAPOR MIXING RATIOS NEAR THE CLOUD-TOPS OF VENUS

George Ohring

3.1 Introduction

From an analysis of the near infrared reflection spectrum of the Cytherian
clouds, Bottema, et al (1964) have concluded that the clouds are composed of
ice crystals. Arguments against ice (or water) clouds on Venus have been
given by Sagan and Kellogg (1963) and, more recently, by Chamberlain (1965).
These arguments are based upon a comparison of the water vapor mixing ratio
derived from the observations of water vapor amounts above the Cytherian
clouds and the required saturation mixing ratio for condensation at the ob-
served cloud-top temperatures. Such a comparison indicates that the water
vapor mixing ratios are much below those required for condensation. However,
the computations by Sagan and Kellogg, and Chamberlain, are based upon the
assumption that the water vapor mixing ratio is constant with altitude above
the clouds. This is not necessarily the case. 1In the Earth's atmosphere, for
example, the water vapor mixing ratio generally decreases with altitude. 1In
this paper, we investigate whether condensation can occur at the cloud-tops,
if the water vapor mixing ratio decreases with altitude at rates comparable
to those in the Earth's atmosphere.

3.2 Discussion

The water vapor mixing ratio is defined as the ratio of the demsity of
water vapor to the density of the dry atmosphere containing the water vapor.
However, to a high degree of approximation, it can be represented as

Py
v (1)

where w is the mixing ratio, p, is the water vapor demsity, and p is the total
density of the atmosphere. Spectroscopic observations yield the total amount
of water vapor above a given reflecting level, which is equivalent to

[+

fpvdz,

z

with units of g cmrz. The results of several such observations are shown in

Table 1. It may be noted that Bottema, et al (1965) give two different values
based upon two different reflecting levels. These reflecting levels are based
upon the estimates of the cloud-top pressure given by Sagan and Kellogg (1963):

51



TABLE 1

OBSERVATIONS OF WATER VAPOR ON VENUS

dz Presumed
. Py Reflecting
Investigators
2 Level
(g/cm™) (mb)

Spinrad (1962) < 7x10'3 8,000

Dollfus (1963) 1x10'2 90

600

Bottema, et al (1965) 1.23x10" 2 90
-3

2.9 x10 600
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90 mb to 600 mb. Spinrad (1962) gives only an upper limit to the possible
amount of water vapor. Furthermore, Spinrad's observation refers to the total
amount of water vapor above a level deep in the atmosphere. Dollfus' (1963)
estimate of 1 x 10-2 g cm 2 is based upon an assumed reflecting level somewhat
lower than 1 atmosphere. For purposes of these computations, we have assigned
values of 90 mb and 600 mb to associate with Dollfus' observations. There is
some uncertainty in the reflecting levels assumed by Dollfus and by Bottema,

et al; their observations may refer to reflecting levels somewhat deeper in the
atmosphere than the level of the cloud-top.

If it is assumed that the water mixing ratio is constant with altitude,
its value can be obtained as follows. From the definition of mixing ratio

P, =W - (2)

Integrating both sides with respect to height, and using the hydrostatic equa-
tion, we have

[\
J pvdz = w JF p dz = g P, (3)

where p, is the pressure at the reflecting level, and g is the gravitational
acceleration. The mixing ratio can then be written as

o

w = f oz [ (,/8) | 4)

z

In Figures 1 and 2, the results of such computations for the data of Bottema,
et al (1965) and Dollfus (1963) are shown with the label k = 0. Spinrad's
own estimate of the maximum water vapor mixing ratio — 10-5 — is also shown.

These values are to be compared with the saturation mixing ratio at the
temperature of the cloud-top. The saturation mixing ratio is

R o
Ys T m P/,

where mv/m is the ratio of the molecular weight of water vapor to the molecu-
lar weight of the Cytherian atmosphere, and eg is the saturation vapor pressure,
which depends upon the temperature of the cloud-top. If we assume that the
molecular weight of the Cytherian atmosphere is equal to that of nitrogen,

mv/m = 0,64. The 8-13p thermal emission observations of Sinton and Strong
(1960) suggest a cloud-top temperature of about 235K. Chamberlain (1965),

after applying a correction for scattering, suggests an upper limit of about
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Figure 1. Water vapor mixing ratios at the Cytherian cloud-top for a

cloud-top pressure of 90 mb. Solid line represents mixing
ratios required for saturation; points represent mixing
ratios computed from obhservations.
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Figure 2. Water vapor mixing ratios at the Cytherian cloud-top for a

cloud-top pressure of 600 mb. Solid line represents mixing
ratios required for saturation; points represent mixing
ratios computed from observations.
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255 K for the cloud-top temperature. The 8-14y thermal emission observations
of Murray, et al (1963) indicate a cloud-top temperature of 208K, but they
state that their observed temperatures are systematically too low because of
uncertain telescope transmission losses. Pollack and Sagan (1965) have eval-
uated in detail several models of the atmosphere and clouds in an attempt to
explain the observed limb darkening of Venus in the 8-13u interval. They
suggest a convective cloud model, in which the limb darkening is caused by
absorption and scattering within the clouds, as the most likely explanation

of the observed limb darkening. For reasonable values of the parameters in
this model, and based upon an overall disc temperature at 8-13u as measured

by Sinton and Strong (1960), cloud-top temperatures of about 210K are obtained.
Thus, as the above discussion indicates, there is,at present, some uncertainty
in the value of the cloud-top temperature. The lines in Figures 1 and 2 show
the variation of saturation mixing ratio with temperatures as the cloud-top
temperature varies from 210K to 235K. The constant mixing ratios (k = 0) are
clearly at least an order of magnitude less than the saturation mixing ratio
at a cloud-top temperature of 235K, and also less than the saturation values
at cloud-top temperatures as low as 215K. On the basis of similar computa-
tions, Sagan and Kellogg (1964) and Chamberlain (1965) have questioned the
aqueous nature of the Cytherian clouds.

Gutnick (1962) has analyzed the variation of water vapor mixing ratio
with altitude at middle latitudes in the Earth's atmosphere. In the tropos-
phere, the average mixing ratio decreases logarithmically with altitude. Such
a decrease can be represented by

d inw

o= -k . (6)

Gutnick's data indicate that the average value of k is about 0.375 km_1 between
the surface and 7 km, and about 0.56 km ! between 7 and 14 km.

If we assume similar variations of mixing ratio with gltitude above the
Cytherian clouds, keeping the total water vapor amount consistent with the
observations, what mixing ratios would we obtain at the cloud-top? We have

-kz
w=w e (7)
for the variation of mixing ratio above the clouds. (For constant mixing
ratio, k = 0.) The variation of water vapor density with altitude can then be
written as
o
v -kz
pv=p<—-> e (8)
P /o
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where the subscript zero refers to the cloud-top. The variation of atmospheric
density with altitude is

p=p e z/H (9)

where H is the scale height. For a nitrogen atmosphere with a temperature of
235K and g = 880 cm/sec™<, H= 7.9 km. Substituting Equation (9) into Equation
(8), we have

p. = (p.) e 7 ' . (10)

The integral of Equation (10) with respect to height must be equal to the ob-
served total amount of water vapor above the cloud,

o] o

f oyde = ) /‘ - (0.127H)z an

(o] (o]

Integrating the right hand side of Equation (11) and solving for (pv)o, we
find

(oy), = (0.127 + k) f o, dz . (12)
o

The mixing ratio at the cloud top can then be obtained from (pv/p)o, where Py
is computed from

p = (13)

where p and T are the pressure (90 mb and 600 mb) and approximate temperature
(235K) at the cloud top, and R* is the universal gas constant. Cloud-top
mixing ratios computed in this manner for the data of Bottema, et al (1965)
and Dollfus (1963) are shown in Figures 1 and 2, where they are labeled k =
0.375 and k = 0.56. Spinrad's data are not treated in this way since if one
were to assume an exponential decrease of water vapor mixing ratio above his
presumed reflecting level of 8,000 mb, the computed water vapor mixing ratios
at 90 mb or 600 mb would be less than that computed for the assumption of
constant mixing ratio, and, hence, would depart further from the required
saturation mixing ratio. Thus, no matter what assumption is made about the
variation of water vapor with altitude, Spinrad's data appear to be incompat-
ible with an aqueous cloud. '
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It is apparent from Figures 1 and 2 that these mixing ratios are much
closer than the constant mixing ratios to the required saturation mixing ratios
at a cloud-top temperature of 235K. And if the actual cloud-top temperature
were just 5-10C lower, saturation would actually occur for some of these cases.
Thus, at least for the observations of Bottema, et al (1965) and Dollfus (1963),
the observed water vapor amounts are compatible with an ice crystal cloud if
the cloud-top temperature is 225K to 230K or less, and the water vapor mixing
ratio decreases with altitude at a rate comparable to that in the Earth's upper
troposphere.

3.3 Conclusions

There is no reason to believe that the assumption of a constant mixing
ratio above the Cytherian cloud is better than the assumption of a logarithmic
decrease. In fact, a better case can be made for the assumption of a logarith-
mic decrease since, if the clouds are composed of water substance, the variation
of mixing ratio with altitude might be similar to that observed above terres-
trial clouds. A reasonable estimate of such a variation is the average value
of the upper atmospheric variation of mixing ratio in the Earth's atmosphere.
As indicated above, this value leads, under certain conditions, to cloud-top
mixing ratios compatible with the presence of clouds composed of water sub-
stance. Thus, we may conclude that compatibility between the observed water
vapor amounts and the presence of water clouds on Venus can be achieved under
certain conditions. Or, put another way, the observed water vapor amounts, at
the present state of our knowledge, are not incompatible with the presence of
water clouds on Venus.
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4. INTERHEMISPHERIC TRANSPORT OF WATER VAPOR AND THE MARTIAN ICE CAPS

George Ohring and Joseph Mariano

4.1 Introduction

One of the fundamental problems of the meteorology of Mars concerns its
ice caps. The amount of water vapor in the Martian atmosphere is about 10-3
g cmm2 (Kaplan et al, 1964). The thickness of the ice caps is of the order
of 1 cm (de Vaucouleurs, 1961). During the course of the Martian year, as
one polar ice cap forms, the other sublimates and completely disappears. The
amount of water vapor in the atmosphere, even if it were all to condense,
could not account for the formation of the ice caps. Thus, it has been sug-
gested that, as one ice cap melts, the water vapor released into the atmos-
phere is transported to the opposite pole, where it condenses. At any one
time, then, most of the Martian water vapor is located in the polar caps.
During each Martian year, there is an atmospheric shuttling of water vapor
from one pole to the other.

There are two possible atmospheric mechanisms that might accomplish the
required transport: a mean meridional velocity and large-scale atmospheric
diffusion. The rate of transport from one pole to the other is probably
greatest during the equinoctial seasons, when one cap is melting and the
other is forming. During these seasons, the Martian temperatures are probably
highest at the equator and lowest at the poles. With such a temperature dis-
tribution, a meridional circulation system would be characterized by equator-
ward motion at the surface and poleward motion aloft. The mean meridional
velocity pattern required to explain the ice cap formation is characterized
by a surface flow from the melting polar cap to the forming polar cap.
Obviously, the required flow is not compatible with the probable flow pattern
during the equinoctial seasons. As the solstice approaches, the summer pole
heats up and may become the hottest point on the planet. A meridional circu-
lation system at this time would be characterized by flow from summer pole
to the winter pole at upper levels and the reverse near the surface. Again,
the required flow — from summer to winter pole near the surface — is not
compatible with the probable Martian flow pattern. Thus, a mean meridional
velocity does not appear to be a satisfactory explanation of the inter-
hemispheric transport of water vapor. 1In this paper we investigate whether
the other possible explanation — large-scale atmospheric diffusion — is
reasonable, and attempt to determine the values of the large-scale diffusion
coefficients required to accomplish the required transports of water vapor.

In the Earth's atmosphere, large-scale latitudinal transports of heat,
momentum, and trace substances, such as water vapor, are accomplished by
large-scale eddy diffusion processes. There are indications that within an
individual hemisphere thorough mixing of a trace constituent can occur over
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time periods of the order of months (Junge, 1962). Interhemispheric mixing
times, on the other hand, have variously been estimated to be from 0.9 years
to &4 years (Junge, 1963). For the Martian ice cap cycle, an interhemispheric
mixing time of the ovder of one Earth year is required, since a complete ice
cap cycle is completed in about two Earth years. Such a mixing time does not
seem improbable when compared with the above values for Earth.

In the following discussion, we describe a simple global diffusion model,
in which water vapor is released into the atmosphere by the melting of a north
polar ice cap on Mars. With reasonable values for a large-scale diffusion
coefficient, we calculate the latitudinal variation of water vapor as a
function of time to see how rapidly the water vapor can proceed from one pole
to the other.

4.2 Discussion
It is assumed that the transport of water vapor is entirely due to large-
scale meridional diffusion, with a diffusion coefficient, K, independent of
latitude and time. The concentration of water vapor, q(u,t)(grams/cm<),

where u = sin 6, 6 being the angle of latitude, and the sources and sinks,
Q (u,t) (grams/cm?/sec), are related by the following equation:

4K %[(bﬁ%&]ww, (1)

where a is the radius of the planet.

Since the set of Legendre polynomicals, Pn(u) satisfies the equation

= n(n + 1) Pn(u) 5 (2)

q(u,t), and Q(u,t) are expanded in Legendre polynomials:

O D JERCE X 3
n=0

Qut) = ) Q) B 4)
=0
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where the coefficients, g, and Q,, are functions of time. Taking the Laplace
transform of q(u,t), Q(u,t), and 0q/dt, we get
q(usp) = Z q,(p) P _(u) (5
n=0
Qu,p) = Z Q. (p) B (W) (6)
=0
oZ%g=  Ipa () - q (1P () (7)
t o tp q,.p 9, Atk -
n=0

In (7) the set, {qp(0)}, are the coefficients in the expansion of q(u,0), the
initial concentration of water vapor. Inserting Equations(5), (6), and (7)
into Equation (1), we get

JRCRORERORNOICES % 5,0 - @1 7w -0 &)
=0

which gives the following equation relatingan and Hﬁ :

[Q (p) + a(®]

q () = 9

p +5 (m)(a+D)
a

To obtain the inverse transform, we use the convolution theorm,

t
92’{ f f(x)g(t—x)dx} =f(p) - g(p) (10)
[o]

where Tp) = Q) , and
) = ———
p +—§ (n) (n+1)
a
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Thus, the equation relating the source coefficients and the concentration
coefficients is:

a

t
.
qn(t) = \/\Qn(x) exp [- f% (n)(n+1)(t-x)]dx + qn(O) exp[- l% (n)(n+1)tJ . (1D
)

We assume a north polar cap one centimeter thick extending from 60°
latitude to the north pole. Initially, there is no water vapor in the atmos-
phere; therefore, the second term on the right hand side of Equation (11) is
zero. The polar cap sublimates at a constant rate per unit area for 12
terrestrial months (~ 1/2 Martian year). Sublimation occurs only along the
perimeter of the cap, and, thus, the cap recedes toward the pole and disap-
pears at the end of the twelfth month.

As the total amount of water released by the source function is equal to
the total amount of water in the cap prior to sublimation, the following
equation must hold,

T 4na2
JP Q(p,t) dS dt = h b/\ das , (12)
3] o Area of
the ice
cap

where T is the time when sublimation ends, h (1 cm) is the thickness of the
ice cap, and dS is a differential unit of area equal to Znazdu.

The source function consists of a step function of width &1 and height A
(see sketch below).

Q(u,t)

-1 p(sin 8) Ho ' +1
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At time t = 0, the left hand side of the above step function is at pg, where Ho=
sin 60°; the velocity of recession of the cap is such that at the end of 12
terrestrial months the source has crossed the boundary gp= 1, v = 4.5x10-9
sec™l; the width of the source, N1, was chosen to be as small as practical,
since sublimation is taking place only at the perimeter of the ice cap — the
computer program constructed for this model allowed a value, Ay = .03; and the
amplitude, A, is obtained from Equation (12).

The left hand side of Equation (12) is

T 4ﬂa ) A N
f f Q(u,t) dS dt = (A A '1‘1 + j A1l - Hy - vt)dt) 2n1a” (13)
T
where M= .03,

Tl = 24.439x106sec(the instant the source function reaches the N.P.)
T = 31.104x1063ec(the instant the source function passes the N.P.)
ny = .866 , . .

v = 4.50x10° sec .

And, with an ice cap thickness of 1 cm (h = 1), we obtain from Equations (12)
and (13) the amplitude of the source function

-.168 x 10°° grams/cm2 sec .

This source function Q(u,t) is expanded in Legendre polynomials to
obtain the coefficients Q,(t) for Equation (4). These coefficients are then
inserted into Equation (11) to obtain qn(t). The coefficients q,(t) are then
inserted into Equation (3) to obtain q(u,t), the concentration of water vapor
as a function of latitude and time. Computations were performed for several
different values of K, the large scale eddy diffusion coefficient.

4.3 Results

Figures 1 to 4 show the distribution of water vapor concentration as a
function of latitude and time for 1ar§e scale eddy diffusion coefficients
ranging from 109 cm? secl to 101! cm? sec-l. The north pole cap starts sub-
limating at time t = 0 and completely disappears at time t = 12 months. Times
are in terrestrial months, so that 12 months corresponds to approximately 1/2
Martian year. To explain the formation of the south polar cap by large scale
meridional diffusion of water vapor from the sublimating north polar cap to
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the opposite hemisphere, all or most of the water vapor released by the north
polar cap must be transported to the south polar regions during a period of
1/2 Martian year — since the south polar cap is observed to grow to maximum
size during the same period of time that the north polar cap is sublimating.

Since, in the present model, there is no sink for water vapor in the south
polar regions, the maximum amount of water vapor that can be transported by the
diffusion mechanism to the southern hemisphere is 1/2 of the total water in the
north polar cap. At the time when this limit is reached, the concentration of
water vapor would be constant with latitude over the entire planet at a value
of about 0.07 g cm~2. This equilibrium condition is reached sometime after
12 months for each of the values of large scale diffusion coefficient —
occurring earliest for the highest diffusion coefficient. For example, with
K= 101 cn? sec™l, the distribution of water vapor with latitude is already
almost constant at t = 12 months, whereas, with K = 109 cm? sec‘l, most of
the water vapor is still in the northern hemisphere at t = 24 months. With
the knowledge that, for this model, equilibrium is attained at 0.07 g cm'z,
we can examine how close the south pole water vapor concentrations are to
equilibrium at t = 12 months for the various diffusion coefficients. For
K = 109 em? sec-l and K = 5x109 cm? sec'l, the south pole concentrations are
so far from equilibrium that they can probably be considered too small to
produce the required interhemispheric transport of water vapor. For K = 1010
and K = 1011, the south pole water vapor concentrations at t = 12 months are
very close to equilibrium. Therefore, this model suggests that the minimum
value of the diffusion coefficient required to accomplish the interhemispheric
transport of water vapor is about 1010 cm? sec-1.

Figure 5 shows the fractional amount of water vapor in the southern
hemisphere as a function of time for the various diffusion coefficients. This
fraction is the total amount of water vapor in the southern hemisphere divided
by the total amount of water vapor originally contained in the north polar ice
cap. As indicated above, this fraction has a maximum value of 0.5 for the
present diffusion model._ At t = 12 months 98 percent of the maximum value is
attained for K = 10!l cm2 sec‘l; almost 90 percent of the maximum value is
attained for K 1010 cp2 sec‘l; about 60 percent of the maximum value is
attained for K 55109 cm? sec'l; and only 10 percent of the maximum value is
attained for K 109 em2 sec-l. These results again suggest that a diffusion
coefficient of at least 1010 cm2 sec™ ! is required to accomplish the necessary
interhemispheric water vapor transport.

It is of interest to compare the speeds of meridional propagation of iso-
pleths of water vapor concentrations with the observed meridional speed of prop-
agation of the Martian wave of darkening that proceeds toward the equator as the
polar cap sublimates. The wave of darkening has an average speed of 30 km/day
(Dollfus, 1961). The velocites of the isopleths are computed as the isopleths
are travelling from the north pole to the equator. The computed meridional velo-
cities of these water vapor isopleths as a function of time for the different
diffusion coefficients are shown in Tables 1 to 3. For K= 109cm? sec™1l, the
average meridional speed of propagation of an isgpleth; V_is 6 km/day; for K =
5x10% cm? sec™L, V is 22 km/day; for K = 1010 cm? sec 1, V is 33 km/day; and,
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TABLE 1

Meridional velocity (km/day) of water vapor isopleths
(grams/cmz) for 3, 5, 7, 9, and 11 terrestrial months.
K= 109 cm? sec.

t Water Vapor Isopleths
(Terrestrial Months) q(grams/cmz)

.02 .04 .06 .08
3 11 4 4 4
5 12 6 5 5
7 7 7 11 11
9 7 6 4 4
11 4 4 3 3
v 8 5 5 5

<l
il

6 km/day.




TABLE 2

Meridional velocity (km/day) of water vapor isopleths

(grams/cm?) for 3, 5, 7, and 9 terrestrial months.

K= 5x109 cmz/sec.

. Water Vapor Isopleths
2
(Terrestrial Months) q(grams/cm )
‘ .01 .02 .03 .04 .05
3 35 24 19 15 10
5 21 18 16 15
7 13
9 13
v 35 22 19 15 13
V = 22 km/day.
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TABLE 3

Meridional velocity (km/day) of water vapor isopleths
(grams/cm2) for 3, 35, 7, and 9 terrestrial months.

K = 1010 cmz/sec.

74

£ Water Vapor Isogleths
(Terrestrial Months) q(grams/cm’)

.01 .02 .03 .04 .05
3 51 33 28 14 11
5 33 23 15
7 22 23
9 30
v 51 33 31 30 20

V = 33 km/day.




2 - —
for K = 1011 cm  sec 1, diffusion is so rapid that V is at least 170 km/day

(no table is presented for this last case because a time period of two months
did not provide sufficient resolution for accurately computing these speeds).
From these data, it appears that a diffusion coefficient of K = 1010 cm2 sec-1
produces isopleth velocities that match the observed meridional speed of
propagation of the Martian wave of darkening. Thus, if the meridional prop-
agation of the wave of darkening is a manifestation of a meridional transport
of water vapor, a diffusion coefficient equal to 1010 cm? sec~! is the proba-
ble value for the large scale eddy diffusion coefficient in the Martian
atmosphere.

4.4 Conclusions

A simple diffusion model to explain the interhemispheric transport of
water vapor on Mars has been developed. In the model, it is assumed that
initially there is a polar ice cap one centimeter thick extending from 60°
latitude to the pole and no initial distribution of water vapor in the atmos-
phere. At time t = 0 this ice cap begins to recede toward the pole at a
constant rate and at time t = 12 terrestrial months it has completely dis-
appeared. The water vapor released into the atmosphere by the sublimating
ice cap is diffused southward by a large scale eddy diffusion process with
a constant diffusion coefficient. Computations of latitudinal distributions
of water vapor concentration as a function of time with this model suggest
that a diffusion coefficient of at least 1010 cm? sec™l is required to
accomplish the interhemispheric transport of water vapor that is necessary
to form the south polar cap at the expense of the water originally in the
north polar cap. It is also noted that a diffusion coefficient of K = 1010
cm? sec™! leads to a meridional velocity of water vapor isopleths equal to
33 km/day, which is in good agreement with the observed meridional speed of
propagation of the Martian wave of darkening (30 km/day). On the basis of
these computations, it is suggested that large scale eddy diffusion of water
vapor from the sublimating polar cap to the forming polar cap can explain
the seasonal ice cap cycle on Mars. The required large scale eddy diffusion
coefficient is about 1010 cm? sec”l. Such a value is of the same order of
magnitude as the large scale eddy diffusion coefficient in the Earth's atmos-
phere (Bolin and Keeling, 1963).

A more realistic model would include the effect of a sink (forming polar

cap) as well as a source (sublimating polar cap) on the water vapor distri-
butions. Development of such a model is planned.
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